
Multi-view Point Cloud Registration using
Affine Shape Distributions

Jia Du, Wei Xiong, Wenyu Chen, Jierong Cheng, Yue Wang, Ying Gu, Shue
Ching Chia

Visual Computing Department, Institute for Infocomm Research, Singapore
{duj,wxiong,chenw,chengjr,ywang,guy,scchia}@i2r.a-star.edu.sg

Abstract. Registration is crucial for the reconstruction of multi-view
single plane illumination microscopy. By using fluorescent beads as fidu-
ciary markers, this registration problem can be reduced to the problem
of point clouds registration. We present a novel method for register-
ing point clouds across views. This is based on a new local geometric
descriptor - affine shape distribution - to represent the random spatial
pattern of each point and its neighbourhood. To enhance its robustness
and discriminative power against the missing data and outliers, a permu-
tation and voting scheme based on affine shape distributions is developed
to establish putative correspondence pairs across views. The underlying
affine transformations are estimated based on the putative correspon-
dence pairs via the random sample consensus. The proposed method is
evaluated on three types of datasets including 3D random points, bench-
mark datasets and datasets from multi-view microscopy. Experiments
show that the proposed method outperforms the state-of-the-arts when
both point sets are contaminated by extremely large amount of outliers.
Its robustness against the anisotropic z-stretching is also demonstrated
in the registration of multi-view microscopy data.

1 Introduction

With recent advances in multi-view single plane illumination microscopy (multi-
view SPIM) [1–5], high resolution in vivo volume images for relatively large
biological specimens can be obtained by fusing the volume images from multiple
views into a single volume. Registration is an essential step to align the vol-
ume images across views into one common coordinate system before information
fusion. The state-of-the-arts, the bead-based registration [3, 6], use fluorescent
beads embedded in the mounting medium around the sample, which allows for
accurate and sample-independent reconstruction. By considering the beads as
fiduciary markers, the registration for multi-view SPIM can be reduced to the
problem of point cloud registration.

The bead-based registration for multi-view SPIM brings new challenges to the
field of point cloud registration. We use a simple example to illustrate the main
challenges of this ill-posed problem, as shown in Fig. 1. Firstly, no presuming
geometries or distinctive image features can be used to establish the correspon-
dence pairs of points between views since beads are randomly distributed in the
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(a) View 1

(b) View 2
(c) Alignment

Fig. 1. Point cloud registration for multi-view SPIM. For the point clouds from two
views, there exists a common but unknown spatial point patterns (the contour of a
fish) as shown in Panels (a) and (b). The underlying spatial transformation between
views is affine. As shown in Panel (c), the proposed method aims to detect the points
of correspondence and solve for the underlying transformation in the present of an
extremely large amount of outliers and missing data in both point clouds.

medium without texture information. In addition, there exist optical distortions
such as the anisotropic z-stretching of each view introduced by the differential
refraction index mismatch between water and the mounting medium [3]. Thus,
the underlying spatial transformation between views is affine, rather than rigid.
Most importantly, the common point patterns across views are contaminated
by an extremely large amount of outliers (up to 90% of thousands of points)
due to the imaging setting of the SPIM: beads can be observed only in the illu-
minated region under each view, and the overlaps between illuminated regions
across views are small. The opacity of samples and light scattering also give rise
to missing correspondence in the overlapping region.

Our method tries to overcome the above challenges. We first propose a lo-
cal geometric descriptor: affine shape distribution. The descriptor represents the
affine invariant shapes for local point patterns between views and also takes
into account the positional uncertainty of each point. To address the outliers
or missing data within the local constellation of each point, a permutation and
voting scheme based on affine shape distributions is introduced to enhance its
robustness and discriminative power against the missing data and outliers. The
common patterns preserved across views are identified by matching the entries of
affine shape distribution among all possible combinations of neighbouring points.
Next, the difference between affine shape distributions is measured by the Fréchet
distance, which allows us to represent each distribution as a high-dimensional
vector in Euclidean space. Therefore, a hierarchical tree-based algorithm with
logarithmic complexity is used to efficiently search for the putative matching
pairs across views among hundreds of thousands of entries due to the highly
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combinatorial nature of this problem. The underlying affine transformation is
estimated based on the putative correspondence pairs via the random sample
consensus [7]. Finally, the proposed method is evaluated under different param-
eter settings and compared against the state-of-the-arts on both the benchmark
datasets for point cloud matching and real datasets from multi-view SPIM.

2 Related Works

Point cloud registration is a fundamental yet challenging task in many areas
such as computer vision, robotics and autonomous systems and medical image
analysis to name but a few (see e.g., [8–10] for comprehensive reviews). Based
on the optimization strategies, they can be separated into two main categories.

The methods in the first category employ an objective function, a closed form
expression to measure the dissimilarity between the aligned point sets under the
tentative transformation. The correspondence detection and transformation es-
timation is conducted iteratively during the minimization of the objective func-
tion. The iterative closest point (ICP) [11] method is one of most well-known al-
gorithm to iteratively find point correspondence based on the nearest neighbour
relationship and update the transformations. However, ICP is prone to being
trapped in local minima, especially under bad initial alignments. To address this
problem, the robust point matching (RPM) [12] relaxes point correspondence
to be continuously valued and employs deterministic annealing for optimization.
The coherent point draft (CPD) [13] method uses one point set to represent the
Gaussian mixture model and converts point matching into the problem of fitting
the model to another point set. Similarly, the robust point set matching uses
Gaussian mixture model (RPM-GMM) [14] to minimize the distance between
two mixtures of Gaussian representing two point sets. Despite their success in
many applications, those approaches tend to degrade badly if the proportion of
outliers in the point sets become large [15].

Another popular strategy is to use a two-stage process. In the first stage,
a set of putative correspondences are computed by using a feature-descriptor
distance to reduce the set of possible matches. The second stage is designed to
remove the outliers in the correspondence set and estimate the transformation,
where a standard procedure to enforce the global geometric consistency of the
correspondence is RANSAC [7]. Notably, the first stage is crucial to the success
of those methods. If discriminative features (e.g., SIFT [16]) are used, the corre-
spondence detection problem can be greatly alleviated. For problems where the
features are non-discriminative, it is pairwise geometric information that helps
in finding the right correspondence. The 4-points congruent sets method (4PCs)
[17] matches the pairs of widely separated 4 points within the same plane. Spin
images [18] compute 2D histograms of points falling within a cylindrical vol-
ume by means of a plane spins around the normal of its underlying surface.
3D shape context [19] generalizes the basic idea of spin images by accumulating
3D histograms of points within a sphere centered at the feature point. How-
ever, the needs to find the particular geometry such as coplanar four points for
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4PCs or the normal of their underlying surface for 3D shape context make them
unsuitable for our problem. The most related to our work is the bead-based regis-
tration in Fiji-Plugin [3], where the author introduces a translation and rotation
invariant local geometric descriptor by representing each point as a vector in
the six-dimensional descriptor space. The vector was determined by the unique
constellation of its four neighbouring points and similar descriptors in different
views had a small Euclidean distance. The drawback of this descriptor is its
sensitivity to selection of the neighbourhood of individual points under different
local spatial density of the points. To address this problem, a rotation invariant
local feature is proposed using group integration [6]. However, neither descrip-
tors takes into account outliers or missing data within the local constellation of
individual constituent points and their descriptors are not affine-invariant.

Belonging to the second category, our approach addresses the limitations
of the state-of-the-arts, the bead-based registration in Fiji-Plugin [3] and can
achieve good results in difficult data. The contributions of the proposed method
include:

1. a novel local geometric descriptor, i.e., affine shape distribution, which rep-
resents the affine invariant shape for local point patterns together with its
positional uncertainty;

2. a permutation and voting scheme, which enhances robustness and discrimi-
native power of affine shape distributions against the outliers or missing data
within the local constellation of each point;

3. an efficient search scheme for the putative matching pairs using a hierarchical
tree-based algorithm allowing for fast and precise point cloud registration.

3 Methodology

In this section, we first define an representation for the local spatial pattern
of one point together with its neighbours, named as affine shape. Next, the
probability distributions of the affine shape are derived from their positional
uncertainty. Finally, we introduce a complete algorithm to establish the putative
correspondence based on affine shape distributions and estimate the underlying
spatial transformation between the random point sets of two views.

3.1 Affine Shape for Local Point Patterns

Let’s have one point p ∈ Rd and its k neighbours, p1,p2, ...,pk, where k is the
minimum number of points required to define a canonical frame that is invariant
to affine transformations. In other word, k points form a simplex to define an
affine basis. (e.g., k = 3 in two dimensional case and k = 4 in three dimensional
case).

Given a point p and its k neighbours with an arbitrary order, an affine
invariant labelling for its k neighbours can first be performed based on their
affine invariant coefficients. Assume p1,p2, ...,pk is not degenerate, point p



Multi-view Point Cloud Registration using Affine Shape Distributions 5

can be represented by a weighted linear combination of its k neighbours. Here
p =

∑k
i=1 wipi = [p1,p2, ...,pk]w, with

∑k
i=1 wi = 1. The coefficients, wi, are

known to be invariant to any affine transformation applied to the point set.
We can rearrange the order of those points by sorting their corresponding |wi|
in ascending order. Given any selected point p, this rearrangement allows for
an affine invariant labelling for its neighbours and thus avoids the need for the
calculation of all the possible permutations of its k neighbours. In the rest of
this paper, we consider the points p1,p2, ...,pk arranged in such a way, with pk

according to the point with the largest |wi|.
Given one point p with its k neighbours, p1,p2, ...,pk, as labelled above,

we show that the shape of the k + 1 points can be represented as a point at
standardized Euclidean shape space [20], Ω, which is a subspace of Rd. Let’s
take the three dimensional case (k = 4) for instance. We first choose one point,
say p4, as the local frame origin. Then, a matrix, A = [p1−p4,p2−p4,p3−p4],
can be defined by subtracting the origin, p4, from the other points. Similarly,
we subtract the selected point, p, by the origin and denote pt = p − p4. We
now consider the inverse mapping of A, A−1, which transforms the three points,
p1, p2, p3, to the points with unit length on x, y and z axes respectively. By
applying the mapping to the selected point in the local frame, pt, we get a vector,
q ∈ Ω, at standardized Euclidean shape space as

q = [p1 − p4,p2 − p4,p3 − p4]−1 · (p− p4) = A−1pt. (1)

Note that the vector, q, encodes the affine invariant spatial patterns of those
five points (p and p1,2,3,4) and serves as a descriptor for the local point pattern.
Thus, we refer to q as the affine shape of these (k + 1) points.

3.2 Affine Shape Distribution

We now address the problem of inherent uncertainty of observed points. There
are two sources of uncertainty in the resulting affine shape representations. One
comes from the uncertainty of the observed point p itself, while another stems
from the variability of the affine basis.

Let’s consider that the position of each point p is a random variable following
a Gaussian distribution function with mean p̄ and covariance matrix Σp ∈ Rd×d.
If we assume the affine basis have no variability, the affine shape, q, also follows
a Gaussian distribution function with mean q̄ = A−1p̄ and covariance matrix
Σq = A−1ΣpA

−>.

To consider the uncertainty of the points used to define the affine basis, we
make use of the following classic theorem [21].

Proposition 1 (Uncertainty Propagation). Let v be a random vector in Rd

with mean v̄ and covariance matrix Σ, and f : Rd → Rd′ be an affine map. Then
f(v) is a random vector in Rd′ with mean f(v̄) and covariance matrix JΣJ>,
where J is the Jocabian matrix of f at point v̄.
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For the three dimensional case, given 4 points as a simplex, we can calculate its
affine matrix, A, from Eq. (1). The Jacobian matrix of A for each entry of the 4
points is equal to

∂vec(A)

∂vec(p1,2,3,4)
=

I3 0 0 −I3

0 I3 0 −I3

0 0 I3 −I3

 , (2)

where 0 is a 3×3 all-zero matrix and I3 is a 3×3 identity matrix. Differentiating
AA−1 = I3, we obtain that d(A−1) = −A−1dAA−1. Using the Kronecker prod-
uct ⊗, it can be rewritten as vec(d(A−1)) = −(A−> ⊗ A−1)vec(dA). Thus, we
can calculate the Jacobian of A−1 at A with respect to the 4 points, as follows

J =
∂vec(A−1)

∂vec(p1,2,3,4)
= −(A−> ⊗A−1)

∂vec(A)

∂vec(p1,2,3,4)
. (3)

Following the Proposition 1, we get

ΣA−1 = J · diag (Σp1
, Σp2

, Σp3
, Σp4

) · J>, (4)

where diag (Σp1 , Σp2 , Σp3 , Σp4) denotes the block-diagonal matrix of size 12×12
with block matrices Σp1 , Σp2 , Σp3 , Σp4 on its diagonal. Note that we consider
the position variation of each point is independent on each other.

Based on Eq. (1), we can naturally get Σpt
= Σp + Σp4

for pt. Again, by
using the Proposition 1, the complete Σq considering the variation in all the
points can be given as

Σq = LΣA−1L> +A−1Σpt
A−>, (5)

where L = [diag(pt) diag(pt) diag(pt)] is a 3 × 9 block matrix with 3 identical
3× 3 blocks.

It is worth noting that the probabilistic distribution of affine shape is in-
variant to rotation and translation. In addition, its mean, q̄, is equal to the
affine invariant coefficients, while its covariance matrix, Σq, encodes the infor-
mation related to the affine bases and uncertainties of the points. In the rest of
this paper, we refer this probabilistic distribution of affine shape as affine shape
distribution.

3.3 Fréchet Distance for Affine Shape Distributions

To measure the difference between two affine shape distributions, we adopt
Fréchet distance between multivariate normal distributions [22] as

dist (N (q̄1, Σq1
),N (q̄2, Σq2

)) = |q̄1 − q̄2|2 + tr
[
Σq1

+Σq2
− 2(Σq1

Σq2
)

1
2

]
,

(6)

where tr(·) stands for the trace of a matrix and | · | is L2 norm in vector space.
Noting that the first term measures the Euclidean distance between two affine-
invariant coefficients in the space of Ω. The second term accounts for the differ-
ence between the non-rigid parts (skewing and anisotropic scaling) of two un-
derlying affine transformations and the positional uncertainties of all the points.
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3.4 Point Cloud Matching Using Affine Shape Distributions

A robust point matching has to satisfy two requirements: the stability and the
discrimination power. The stability means, given the constellation of a point
and its m neighbours in one view, the corresponding pattern of one point to-
gether with its m neighbours can also be found in another view. However, it
is not easy to find such correspondent pairs of patterns. Affine transformation
may change the Euclidean distance between points, and thus changes the mem-
bers of neighbourhood of one point selected by nearest neighbours searching.
The constellation of local point patterns can also be contaminated by the unex-
pected occlusion and outliers occurred in the local neighbourhood for the given
point. Therefore, given any point, we need to consider a larger neighbourhood
by including its nearest n neighbours, where n > m. Then, all possible combina-
tions of m points from n nearest points should be examined. As long as at least
one combination of m points is common, a stable feature for matching of point
patterns can be established.

The discrimination power ensures that different point patterns in one view
should match their respective patterns in another view. However, it is often
not the case since similar affine shape distributions can be obtained from other
different spatial pattern of points. To increase the discrimination power, we have
to consider the case when m > k and assume there exist at least

(
m
k

)
common

combinations of k points out of
(
n
k

)
possible combinations from the n nearest

points. To enforce this constraint, a voting system is introduced to establish a
matching between two point patterns in different views only when there exist
at least

(
m
k

)
pairs of similar entries of affine shape distributions between their

corresponding local neighbourhoods.

Algorithm 1: affine shape distribution generation for point matching

Input : a random point set P with N number of points
Output: affine shape distributions with

(
n
k

)
·N number of entries

1 for each point p in P do
2 for each combination of its k points out its n nearest neighbours do
3 Calculate the mean q̄ via Eq. (1)
4 Estimate the covariance matrix Σq via Eq. (5)

Given a random point set, all the entries of its affine shape distributions
can be calculated as detailed in Algorithm 1. The next step is to establish the
putative correspondence pairs between those entries of two point sets. Due to the
highly combinatorial nature of this problem, there is a need for speeding up the
search for potential matching pairs among the huge amount of entries for affine
shape distributions. Inspired by the ideas in [22], we transform the covariance
matrix of each affine shape distributions into a diagonal matrix. As discussed
in the work [23], under the commutative case, the calculation of the Fréchet
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distance between two affine shape distributions in Eq. (6) can be simplified as

dist (N (q̄1, Σq1
),N (q̄2, Σq2

)) = |q̄1 − q̄2|2 +
∣∣∣vec(Σ

1
2
q1)− vec(Σ

1
2
q2)
∣∣∣2 . (7)

Note that each affine shape distribution can be represented by a vector in a
feature space with L2 norm. Therefore, for each entry of affine shape distribution,
we employ a KD-tree to search for its nearest neighbours as potential matching
pairs in this high dimensional vector space. The complete algorithm for random
point matching based on affine shape distributions is summarized in Algorithm
2.

Algorithm 2: robust point matching based on affine shape distributions

Input : two random point sets X and Y related by an underlying affine
transformation

Output: a set of putative correspondence pairs and an estimated affine
transformation

1 Calculate the affine shape distributions for X and Y using Algorithm 1
2 for each entries of the distributions of X do
3 Search for its nearest neighbour in the entries of Y based on Eq. (7)
4 Add one vote for the pair of points based on the matching of their entries

5 for each pairs of points do
6 Keep the pairs of points with the number of votes greater or equal than

(
m
k

)
as putative correspondence between X and Y

7 Estimate the underlying affine transformation based on the putative
correspondence via RANSAC [7]

4 Results

4.1 Experiments on synthetic 3D random points

In this experiment, we evaluate the performance of the proposed method under
different parameter settings. To generate data sets of 3D random points, we first
generate 100 points randomly distributed in a 100× 100× 100 space as inliers of
one view. We obtain the corresponding inliers in another view by transforming
those points using an random affine transformation and independently adding
Gaussian positional jitter, N (0, σ2I3), to each point. Next, we add outliers ran-
domly into the surrendering regions of the inliers for both views. For each trial,
we compare the ground truth with the putative correspondences detected by the
proposed method before further refinement via RANSAC. Their precision and
recall ratios are recorded for 100 random trials. Three types of experiments are
conducted under different parameter settings.

For the first type of experiment, we fix the number of nearest neighbours,
n = 8, and vary the number of common neighbours, m, under different amounts
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of outliers with σ = 0.1. As shown in Fig. 2(a), when m = 5, it achieves a
good balance between the discriminative power and robustness against outliers.
Similarly, given m = 5 as fixed, the second type of experiments varies n under
the different number of outliers with σ = 0.1. According to Fig. 2(b), a trade-off
between precision and recall ratios for the choice of n is obtained when n = 8.
Therefore, we can fix the parameters (m = 5, n = 8) for the rest of experi-
ments. Finally, to investigate the influence of positional jitter for the proposed
method, we evaluate its performance under four levels of Gaussian positional
jitter (σ = 0.01, 0.1, 0.5, 1) respectively. Theoretically, the expected relative dis-
tance between points, r, is equal to 1/ρ1/3, where ρ is the density of the point
cloud. In our case, the range of r are from 15 to 22 depending on total number
of points including both inliers and outliers. Compared to the relative distance
between local neighbors, the registration problem under the high levels of Gaus-
sian positional jitter (σ ≥ 0.5) is considered quite challenging. As shown in Fig.
2(c), when the level is high (σ ≥ 0.5), both precision and recall ratios for true
correspondent pairs drop rapidly. Similar results were also reported in [6]. It is
a well-known limitation that such descriptors derived from local point pattern
are relatively sensitive to the positional jitter due to their dependence on local
spatial constellation of points [24]. Despite their limitations, this type of local
descriptors are widely used in many applications such as camera-based document
image retrieval [25] and pose estimation using a projected dense dot pattern [26],
for its robustness against large number of outliers.

4.2 Experiments on benchmark datasets

In this experiment, we focus on investigating the robustness of the proposed
methods against the large number of outlier. Two types of point patterns (’fish’
and ’character’) from the benchmark synthesized datasets [12] are used to evalu-
ate the performance of our method against the state-of-the-arts. Those methods
include iterative closest point (ICP) [11], coherent point drift (CPD) [13] and
robust point set matching using Gaussian mixture model (RPM-GMM) [14],
whose source codes are publicly available. We also compare our method with
the algorithm described in [3] noted as Fiji. We implement our method using
Matlab and all the methods are run on a laptop with 2.2GHz CPU and 8G
RAM. Rigid transformation between two point sets is applied for a fair compar-
ison since the available version of RPM-GMM only supports the estimation of
rigid transformation.

In each trial, we generate a random rigid transformation and apply it to the
prototype patterns to obtain a pair of point patterns related by the transfor-
mation. Both patterns are located within an area of size 10 × 10. We also add
a Gaussian positional jitter with σ = 0.001 to each point of the transformed
prototype patterns. To evaluate the performances of the methods under heavy
outliers or occlusions, two types of tests are designed: (1) Outlier test. Random
outliers following an uniform spatial distribution are added to both sides of the
point patterns respectively; (2) Occlusion test. We remove a portion of true cor-
respondence from both point patterns and add same numbers of random outliers
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Fig. 2. The mean and standard deviation of precision and recall ratios over 100 random
trials under different parameter settings against different numbers of outliers.



Multi-view Point Cloud Registration using Affine Shape Distributions 11

as those of the removed inliers to both sides of the point patterns. The examples
of the synthesized point sets of both types are shown in Fig. 3. One point set
is considered as the moving point set while the other is taken as the fixed point
set. The matching error is defined as the mean of Euclidean distances between
the inliers in the fixed point set and their correspondences in the transformed
moving point set obtained by each method. The average matching errors over
100 random trials by all the methods for two types of tests are shown in Fig. 4.
Obviously, the performances of our method are much better than others espe-
cially under heavy outliers and occlusions. For ICP, the large mean and standard
deviation of registration error arise under all the cases due to local minima and
bad initial alignments. CPD, RPM-GMM and Fiji perform well in the cases with
a few outliers or occlusions, but they yield far less robust alignments than our
method under the cases with large amount of outliers or occlusions. The average
running times of different methods are listed in Table 1. Our method is slower
than others as we need to consider combinatorial optimizations.

Table 1. Average running times of different methods against the total
number of points N (in seconds).

N = 100 N = 200 N = 500 N = 1000

ICP 0.2640 0.428 1.109 3.414
CPD 0.0169 0.086 0.196 0.896

RPM-GMM 0.0554 0.061 0.093 0.162
Fiji 0.517 1.162 2.615 12.581

Ours 1.524 3.210 9.480 25.020

Fig. 3. Left column shows the prototype shapes for fish and character. The middle
column shows an example of character case with outliers, where the points in one view
are plotted as blue circles while those in another view are red crosses. The right column
shows an example of fish case with occlusion.
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(d) Character (Occlusion Test)

Fig. 4. The mean and standard deviation of matching errors over 100 random trials
by different methods for the two types of tests.

4.3 Experiments on dataset from multiview SPIM

The data set of multi-view SPIM is obtained from [27] associated with [3]. A
live Drosophila egg was recorded from seven views with angles of 45◦. Each
view contains approximately two thousands of fluorescent beads of 0.5µm diam-
eter. The resulting images have a size of (1040 × 1388 × 90) with voxels of size
(0.731µm× 0.731µm× 2µm).

The beads of all the views are first extracted with subpixel accuracy us-
ing a difference of Gaussian filter [28]. We set σ = 1 for this experiments. An
example of the result by the proposed method is shown in Fig. 5. To conduct
quantitative comparisons against the state-of-the-arts (CPD and the bead-based
registration in Fiji-Plugin [3]), the ground truth of corresponding beads across
views is required. Since the Fiji-Plugin is a well-established method in this field,
we first register each image to the image of first view using the Fiji-Plugin and
consider the detected corresponding beads as ground truth. Then, we apply all
the methods to estimate the underlying transformations across views. The reg-
istration error is defined by the average Euclidean distance between beads of
ground truth in the first view and their correspondences of another view warped
by the estimated transformations using each method. As listed in Table 2, the
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proposed method achieves comparable registration accuracies for all the views
as the Fiji-Plugin, while the CPD yields large registration errors. The average
execution times for the CPD, Fiji-Plugin and our method are around 35, 37 and
76 seconds respectively.
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(a) Beads extracted from two views
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Fig. 5. Illustration of the bead-based registration result between two views using the
proposed method. Panel (a) shows the extracted bead from two views. Noting that the
contours of samples in both views are mistakenly identified as beads. Later, they are
automatically treated as outliers by the proposed method. The result of registration
between two views with a rotation around 45◦ are illustrated in Panel (b). The yellow
circles indict the correspondence pairs detected by the proposed method.

Table 2. Comparison of the average registration errors between the
reference beads in view 1 and those in the rest of views.

view 2 view 3 view 4 view 5 view 6 view 7

CPD 135.91 238.00 313.29 306.70 300.06 161.68

Fiji 0.6326 0.8373 0.8763 1.0952 1.2159 1.1177

Ours 0.5701 0.8567 1.1384 1.9056 1.5877 1.8183

It is well-known that there exists the anisotropic z-stretching of each view
introduced by the differential refraction index mismatch between water and
agarose since the sample is never perfectly centered in the agarose column [3].
To evaluate the effect of anisotropic z-stretching on registration accuracy, an
affine transformation, diag(1, 1, sz), is created, where sz is a scaling factor on
z-axis. We apply those additional affine transformations to the images of the
first two views to simulate anisotropic z-stretching. We simulate four levels of
anisotropic scaling with sz = 0.6, 0.7, 0.8, 0.9, where the level with sz = 0.6
is the one with the largest anisotropic scaling among all of the levels. Table 3
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shows the average registration error and the numbers of true correspondence
pairs detected by each method under different scaling factors sz. Note that the
local descriptor used by the Fiji-Plugin is not affine-invariant as we discussed in
the related work section. Therefore, for the case with large anisotropic scaling
(sz = 0.6, 0.7), the proposed method can register well, while the Fiji-Plugin fails
due to the inadequate number of true correspondence pairs detected by its local
descriptor.

Table 3. Comparison of the average registration errors and the num-
ber of true correspondent pairs under different levels of anisotropic
scaling in z-axis (sz). Note that the total number of pairs of true cor-
respondence as inliers is 219 and the total number of extracted beads
in two views are 2736 and 2538 respectively.

sz = 0.9 sz = 0.8 sz = 0.7 sz = 0.6

Fiji
average error 0.6223 0.8534 63.56 160.2
corresp. pairs 62 12 0 0

Ours
average error 0.5690 0.5917 0.5857 0.6394
corresp. pairs 71 42 27 14

5 Conclusion

We have presented a point cloud registration using affine shape distributions for
multi-view SPIM. The proposed method detects the points of correspondence
and solves for the underlying transformation in the presence of an extremely large
amount of outliers and missing data in both point clouds. Experiments show this
method is more reliable against the large amount of outliers and the anisotropic
scaling of the underlying affine transformation, even in cases when the well-
established methods fail. However, our method is sensitive to positional jitter.
Hence, our future work is to explore descriptors which are robust to potential
positional jitter and non-linear deformations.
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